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COUPLED DYNAMIC THERMOELASTICITY PROBLEM FOR A HALF SPACE 

WITH THERMAL "MEMORY" 

V. L. Kolpashchikov and S. Yu. Yanovskii UDC 539.3 

The coupled dynamic thermoelasticity problem is solved for a half space endowed 
with thermal "memory." The properties of the generated thermoelastic waves are 
discussed. 

Chen and Gurtin [1], elaborating the general nonlinear theory of conduction of Gurtin 
and Pipkin [2], extended it to include strain in the medium. They derived nonlinear func- 
tional defining relations for the thermoviscoelasticity of bodies with thermal and strain 
memory, whereby the prior history of the variation of the thermodynamic and mechanical char- 
acteristics is taken into consideration: 

r (X, t) = W (At), a (X, t ) =  E (At), B (X, t) = N (A'), q (X, t) = Q (A'), ( l ) 

where h t = (F, T, F -t, ~t, ~t) is the thermal history of the process (l). 

In the present article, we investigate the one-dimensional coupled dynamic problem for 
a linear thermoelastic isotropic half space. After linearization of the system of defining 
relations (I) with regard for the laws of conservation of momentum and energy, we arrive at 
the following dimensionless system of equations for the temperature, stress, and displace- 
ment fields induced in the half space: 

OzO OO i ~, OO (x, ~--S) ds= OzO i 020~, T--s) ~u 
+ + - + , O x e n '  

0 0 

~u ~u O0 r ~ ? (s) O0 (x, �9 - -  s) ds, 
Ox 2 #r 2 Ox J Ox 

0 

~x= - - - - O + F  ?(s) O(x, x--@ds, (2) 
0x 

0 

~____!4 o.~ O - - r  ?(s) O(x, ~--  

0 

where 

x,01j = Dr f (A0), -- ~Stj = DoE (AJ. ~3 (81~8h~ + 6.8~D + • = De E (Ao). 
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At the boundary of the half space (~ = 0), the stresses are equal to zero, and the tem- 
perature changes at the initial time to a value Tm, thereafter remaining constant. The tem- 
perature, stress, and their time derivatives are equal to zero at the initial time. The 
temperature and stresses are bounded at infinity: 

0 (x, O) = ~ (x, O) - O0 (X,o~ ~) ~=o = O~ o~(x' ~) ~=o = O, (3) 

o~(o, ~)=o, o(o, ~)=n(~), (4) 

lim ex(X, x)<oo, lim 0(x, ~<oo .  (5) 

Applying the Laplace transform with respect to the variable �9 to (2), (4), and (5), sub- 
ject to the initial conditions (3), we obtain 

a~(x, p) _ ~ [ ~ +  ~+~(~-rv) l  o(x, p)= 
d~ ~ 

e p ~,(x, p); 
t~ 

a@(x,  p) - - f ~ , ( x ,  p)= f ( l - - r ~ g ( x ,  p), 
d~= 

~~ = ~= = 2 ~ + ~  2~s + x, 

,L(o, p)= o, ~(o, p)= _L 
P 

lira ~x (x, p) < ~, 

(6) 

(7) 

(8) 

, (9 )  

lira O(x, p)< 00. (10) 
X-PaD 

Solving the boundary-value problem (6)-(I0), we obtain expressions for the transforms of 
the temperature and stresses: 

O(x, p) = ( f  - -  u exp (- -  T,.x) - -  (p' - -  ~ )  exp (--  ~,x) (11 ) 

~'x(x, p)= p ( l - r ? )  Iexp(--wx)--exp(--y2x)l, (12) 
v~-v~ 

where 

P { ~ + ~  v~.2 = -?- p +  =-- 

In order to revert  from the transforms to 
necessary to specify the relaxation functions. 
flux and internal energy in the form [3] 

~ +  ~ 8 ( l - r ? ) + W [  p +  M 2 + ~ +  g ~ z  ~ - ( l - I ' ? ) ]  2 - 4 p  Mz+~. " (13) 

the inverse transforms in (II) and (12), it is 
We write the relaxation functions for the heat 

=( , )=  l + A,+o(x2), I~( , )=  I + B , + o ( r  (14) 

We specify the temperature relaxation function for the stresses in the form 

v (~) = 1 + r,~ + o (~D. (I 5) 

We analyze the asymptotic cases of small and large times. In the neighborhood of the 
point p = ~, we obtain from (13) 

r - P / (~+M'- VK)+ 1 - A ~ - ~ ( r + ~ ) +  +o 1,2 ~ -~- /9 + 1~-t- , (16) 

VI,2~ P--- + 6 1 , ~  + O  , (17)  

where 

K =(1 + 8 +  M~)z--4M z, 
L = (1 + M 2 +  e) 11 - -  A A ~ - - 8 ( A  + r ) l -  2 0  - - A ~ ) ,  

vt.2 = V21V1 +2w~+8 + WF,, 

(18) 

(19) 

(20) 
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81.~= v I . = ' [ 1 - - A M 2 - - 8 ( F + A ) - + - - ] ~ ]  " (21) 

Making use of express ions  (16)- (21) ,  we obtain  an approximate so lu t ion  in the v i c i n i t y  
of the wave fronts for small times: 

--[ I-AMz-8(F+A) L ] 

X ( ~ - - v  x ) ] - - e x p ( - - 8 , x ) H ( ~ - -  v x l ) [ l - - ? v ~ - - e - - V K - -  ' 

L L _~_e_VK)](,~_ ]]}, -- [ ' - -AM~--~(r  + A ) +  ~K-+~- - ( '  ~ .  v~ (22) 
/ . I s  

v2 . v2 

If  the r e l a x a t i o n  func t ion  for  the heat f lux is  spec i f i ed  in the form of a Maxwell-- 
Cattaneo ke rne l :  

=(~) = M-~ exp -- , (24) 

and if temperature relaxation of the stresses and relaxation of the internal energy do not 
take place: 

? (~) = O, ~ ('0 = O, ~ (0) = co/~,, (25) 

then,  s u b s t i t u t i n g  (24) and (25) in to  (I I ) - (13)  and spec i fy ing  the l i n e a r i z a t i o n  c o e f f i c i e n t s  
as 

• ~ = ~ t ( 3 ~ + 2 ~ ) ,  •  •  (26) 

we arrive at the generalized thermomechanics solution [4]. 

We now consider the other extreme case of large times. We adopt the relaxation functions 
in the form [5] 

=(~) = exp(- - to(O,  15('0 = e x p ( - - ~ %  ?(~) ---- exp( - -~"O-  ( 2 7 )  

In the limit p § 0~ we infer from (13) 

(0 i 

t t ~  

It is evident from (If), (|2), and (28) that the large-time solution of problem (2)-(5) 
satisfies the classical equations of coupled thermoelasticity and exactly coincides with the 
large-time solution of the classical problem, in which case 

l 
~i----~-~, 0~=oo, o~=oo. (29) 

Analysis of the Solution. I. It is evident from the solutions (22) and (23) that two 
temperature waves and two normal-stress waves propagate in an elastic half space with velo- 
cities vx and v=. By analogy with generalized thermomechanics, we call them fast (v=) and 
slow (v~) waves. The nature of the dependence of the velocities on the dimensionless heat 
propagation velocity is illustrated in Fig. I for two values of the coupling parameter. The 
dashed curves represent the velocities for the uncoupled problem. As b § 0, the velocity of 
the slow wave tends to zero (as b), while the fast-wave velocity tends to unity; as b + ~, 
the fast-wave velocity grows without bound as b(! + c) ~/=, while the slow-wave velocity tends 
to (! + c)-z/2. The analogous dependences of generalized thermomechanics are given in [6,7]. 

2. If for comparison with the results of generalized thermomechanics we specify the 
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Fig. 1 Fig, 2 
Fig. I. Velocities of fast (v2) and slow (vl) 
waves versus heat-propagation velocity for two 
values of the coupling parameter (vl, v2, b, and 
are dimensionless). 

Fig. 2. Decay rates of fast (~2) and slow ~61) 
waves versus heat-propagation velocity for a heat- 
flux relaxation parameter A = --I, stress--tempera- 
ture relaxation parameter F = O, and Coupling 
parameter E = 0.01 (~i, 62, ~unc, b, and c are 
dimensionless). 

linearization coefficients in the form (26) and take the heat-propagation velocity equal to 
the velocity of second sound, we find that thermal memory effects cause the wave velocities 
of the coupled problem to increase. Thus, for aluminum M, = 2.157 [8] 

For small coupling parameters 

v__~_~ ~, 0.81, v~ ~ 0.99, (~, ---- 1). (30) 
vi ~2 

w* M v~ v* V* " + - - - - - - - - - ,  __- -+  (31) 
vi  w M ,  v2 v _ 

3. At the wave fronts, the temperature and stress suffer discontinuities: 

[eI~ x 1 h .= = 2 V-----~ ( ~  4- e -+ M 2 ~ 1) exp ( - -  8~ ,2 x), ( 3 2 )  

1 
= -r - ~  exp(--61.2x),  (33) 

which decay into the depth of the half space. 

4. Thermal memory effects strongly affect the nature of the decay processes. It fol- 
lows from the results of Chen and Nunziato [9] that A ~ 0. Additional investigations are 
required to determine the sign of the coefficient r. 

The dependence of the decay rate of the fast (6~) and slow (61) waves on b is given in 
Fig. 2 for A = --; and F = 0. The dashed curve represents the decay rate of the thermal wave 
in the uncoupled problem. For small Values of b (i.e., for media having a small density and 
large heat capacity), the decay rate of the slow wave increases without bound, asymptotically 
approaching the decay rate of the uncoupled problem, while the fast-wave decay rate tends to 
zero. As b § =, the fast-wave decay rate increases without bound, asymptotically approach- 
ing the decay rate of the uncoupled problem, while the slow-wave decay rate tends to the 
finite limit ~/211 -- (r + A)(| + c)]/(l + c)3/2. In the neighborhood of the point b = I, a 
"resonance effect" is observed, the stress discontinuities at both wave frontsdecay at the 
same rate [for e = 0, with a decay rate (l -- A)/4]. 

5. Ignoring the coupling of thermal and mechanical effects (~ = 0) and assuming the 
absence of temperature relaxation of the stresses (F = 0), from (22) and (23) we deduce a 
solution of the uncoupled thermoelasticity problem [11] for small times in the vicinity of 
the wave fronts: 

O(x, T)~ H~--xM)exp [ 1--AMZ2M x] , 
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{H(~--x) [~ ~--A~ (~--x)]- 04) ~.~, ~)~ ~_------~ ~ _ ~  

�9 l 1 - - A M ~  x ] H ( ~ - - x M ) [ I  1 - - A M ~  (x - -x .M)]} .  
~ e x p  - -  2 M  M ' z - 1  ( 3 5 )  

We note that the presence of temperature relaxation of the stresses does not influence 
the behavior of magnitude of the discontinuities of the uncoupled problem. 

6. If the relaxation function for the heat flux is specified in the form of a Maxwell-- 
Cattaneo kernel, if relaxation of the internal energy and temperature relaxation of the 
stresses do not occur, and if the linearization coefficients are specified in the form (26), 
then a solution of the coupled thermoelasticity problem of generalized thermomechanics can 
be obtained from the general solution for the transforms (11)-(13). 

7. The large-time solution of the problem satisfies the classical thermoelasticity 
equations and exactly coincides with the large-time solution of the classical problem with 
the relaxation functions specified in the form (27) and (29). 

NOTATION 

~, coordinate normal to the surface of the half space; t, time; T , temperature of the 
natural state of the half space; ~(t), relaxation function for the heat flux; B(t), relaxa- 
tion function for internal energy; y(t), temperature relaxation function for stresses; c v = 
DoE(Ao) , volume specific heat; ~t, thermal conductivity; a, thermal diffusivity; ~, ~, Lame 
coefficients; O, density of material; at, coefficient of linear thermal expansion; E, elastic 
modulus; Tr, heat-flux relaxation time; uE, displacements normal to surface of half space; 
og~, Ovx, o~, normal stresses; v = [(2~a + ~,)/p]~/2, elastic-wave velocity for media with 
thermal memory; w = (a(0)/Cv) I]2, velocity of thermal disturbances for media with thermal 
memory; v* = ((2~ +%)/p)i/a, velocity of longitudinal elastic waves; w* = (a/Tr) ~/2, velocity 
of thermal disturbances in generalized thermomechanics; Ao = (0, To, Toi, 0), equilibrium 
thermal history; ~, Poisson ratio; T, instantaneous temperature; ~, free energy; n, entropy; 
q, heat flux; F = ~u~/~, strain; g = 8T/8~, temperature gradient; F t, ~t, ~t, total his- 

tories; H(T) = ~I ~>0 . Dimensionless quantities: ~=t~(0)~/=(0), x=~(0) v/=(O), u=u~(0) v(2• 
(0 T<0 

+ ~ ) / a  (0) (Tin - -  To) ~ ;  0 = (T - -  To)/(Tm - -  To), a (~) = E ({)/= (0), ~ (T) = ~( t ) /~  (0), V (x) = ~(t)/V (0); a t = ojj/x, (Tm - -  To) , 

M l = ~ / w  2, ~ = I IM ~, z = x l x t v ~ / ( 2 x s  +x4)  a (0); A = a "  (0)/~ (0) v ~, B = ~ "  (0) a (0)/~ ~ (0) v ~, r = ? (o) a ( 0 ) / ~  (o) v~; rx  = y'  (o) ~ (o)/ 

v (o) ~ (o) ~, ~ = ~ / ~ ,  b~ = ~ / ~ ,  ~. = ~ To O~ + ~)~/(~ + ~) ~. 
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